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Abstract

We investigate the classic “inverse problem” of extracting collision and scattering
cross sections from measurements of electron swarm behavior. A Monte Carlo tech-
nique for simulating electron motion through a gas of isotropic scatterers is presented,
providing a simplified version of Biagi’s MAGBOLTZ algorithm. Using this Monte
Carlo software, we examine the thermalization of electron swarms, focusing on their
drift velocity and informational entropy, providing justification for a set of analytic ex-
pressions for drift measurements which are valid in the hydrodynamic regime. These
expressions are then used to estimate the 4He scattering cross section, first by a sim-
ple grid interpolation and then through a genetic algorithm (GA). This technique
demonstrates that the 4He momentum-transfer cross section in the 0-7 eV range is
approximately 6.5 Å2, with a peak near 2 eV, in agreement with literature values.
Empirical cross sections are also presented for Xe and He:CH4(90:10).
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Chapter 1

Introduction

We consider here the motion of ionization electrons created by the energy loss of a

charged particle moving through a gas. This situation corresponds, for example, to

present drift chambers, where the drift velocity of the electrons vd is small compared

to their instantaneous random velocity. vd · t = x determines the location of the

ionizing particle’s track, where vd depends upon the gas used, and in particular the

electron-atom scattering cross section.

Obtaining collision and scattering cross sections from data on electron swarms

liberated by ionization in a gas is a classic “inverse problem.” Cross sections are

fundamental quantities, dependent upon the energy of incident electrons (typically

in the 0.3 to 3 eV range) and the details of atomic states. An electron swarm’s

properties, its drift velocity, diffusion coefficients or magnetic deflection angle, are

derived from the purely local cross section parameters.

The study is motivated by the vast amount of drift velocity data (see, e.g., [4])

compared to the only spotty knowledge of cross section measurements.
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Chapter 2

Microscopic Scattering Theory

In this chapter, we begin the discussion of electron swarms and their motion through

neutral gases. This field of inquiry is an excellent example of the importance of

proper approximations, a topic on which later sections will elaborate. To begin with,

we note that in the conditions of a typical drift detector, the de Broglie wavelength

of the swarming electrons is much smaller than the spacing between atoms (for gas

pressures less than about 100 atmospheres). Consequently, the swarm can be modeled

as a set of classical particles, each interacting with only one gas atom at a time [10].

E

B

γ

t > 0

x

y

z

t = 0

(E/p scaling)

1 atm
gas

Figure 2-1: Schematic sketch of an electron swarm progressing through a drift cham-
ber.
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2.1 Motion in Free Space

Consider a nonrelativistic electron moving through vacuum, subjected to ~E and ~B

fields. For our drift chamber geometry, we can choose a coordinate system such that

~B = Bẑ and ~E = Exx̂. The electron’s acceleration is given by the Lorentz force law,

m
d~v

dt
= e ~E + e~v × ~B. (2.1)

In our coordinate system, this simplifies to the three coupled equations

v̇x =
(

e

m

)

Ex + ωvy, (2.2)

v̇y = −ωvx, (2.3)

v̇z = 0. (2.4)

Decoupling the first two equations gives

v̈x + ω2vx = 0, v̈y + ω2vy +
(

e

m

)

Exω = 0,

which can be solved to yield

vx =
eEx

mω
sin(ωt) + vox,

vy =
eEx

mω
[cos(ωt) − 1] + voy, (2.5)

vz = voz.

Integrating these velocities from an initial time t = 0 to a time t = ∆t later gives

expressions for the incremental change in position:

∆x =
eEx

mω2
(1 − cos ω∆t) + vox∆t,

∆y =
eEx

mω2
sin ω∆t − eEx

mω
∆t + voy∆t, (2.6)

∆z = voz∆t.

12



Except for a change of coordinate axes, these formulas are essentially the same as

those given in [5] (in the special case that ~E and ~B are orthogonal). Note that the

corresponding equations in [5] lack factors of e/m on several instances of the electric

field.

2.2 Scattering

The next phenomenon which we must describe is the interaction of an electron with

a gas atom or molecule. These events occur with probabilities dependent upon the

electron-atom scattering cross section, the gas density and the applied fields. The

simplest case is electron motion through a noble gas, in which all scatterers are

monatomic. Since the gas mixtures in many drift detectors contain large proportions

of noble gases [3, 4], this is a case of considerable practical interest.

The standard practice is to model the noble-gas atoms as hard spheres whose cross

sections σm depend upon the energy of the incident electron [20]. This is quantum-

mechanically justifiable [26] as long as the electron’s energy ǫ is less than that required

to excite the atom. Conveniently, helium possesses a first excitation energy of ≈ 19

eV; collisions below this upper limit will be elastic. Newtonian kinematics gives the

result that a fraction λ(θ) of the electron’s energy will be lost to the atom, where θ

is the polar angle between the incident and final velocities:

λ(θ) =
2mM

(M + m)2
(1 − cos(θ)). (2.7)

Here, m is the electron mass and M is the mass of the target atom [15]. We shall use

λ without an argument to denote the fractional energy loss averaged over all angles

θ:

λ =
2mM

(M + m)2
. (2.8)

For helium gas, this ratio is roughly 2.7 × 10−4.

Gases not of the noble variety introduce complications. The presence of asymmet-

ric molecules with translational and vibrational modes allows for a variety of inelastic

13



collisions, each of which is described by an energy-dependent cross section and a char-

acteristic energy loss. In addition, these molecular gases typically ionize more readily

than the noble-gas mixture component. This may be convenient in some experimen-

tal situations, where such ionizations are necessary (e.g., the apparatus of [3]), but

it makes theoretical work more difficult. (In this context, one recalls J. Goldstone’s

aphorism, delivered to an undergraduate string theory class: “Theorem zero—you

can’t win.”) Common examples of molecular gases present in drift chamber mixtures

include N2 and hydrocarbons like CH4, C2H6, etc. [10].

2.3 Monte Carlo Algorithm

The concepts developed in Sections 2.1 and 2.2 lend themselves readily to a Monte

Carlo (MC) implementation. Such an implementation is simple, in principle: define

an electron within the computer’s memory by its position and velocity coordinates,

propagate that electron according to the Lorentz force law Eq. (2.1), decide stochas-

tically whether or not the electron suffers a collision during that timestep, and in the

event of a collision randomize the velocity vector with an appropriate energy loss.

Fraser and Matheison [15] give the basic rules for constructing such an MC sim-

ulation. C code to implement this construction is given in the Appendix. The key

resource for the MC algorithm is a dependable source of random numbers. Using R

to denote a random variable uniformly distributed between 0 and 1, we can write

formulae for the kinematic quantities necessary to run the simulation. For isotropic

scattering—the case covering hard-sphere noble gases, and the case most studied in

this paper—the polar angle θ is computed by

θ = cos−1(1 − 2R), (2.9)

while the azimuthal angle φ is chosen from a uniform distribution,

φ = 2πR. (2.10)

14



The most sophisticated part of the MC algorithm is choosing the proper timestep.

If computational efficiency is not a primary goal, one can code the MC so that it esti-

mates the mean time between collisions and chooses a timestep significantly smaller.

A somewhat more efficient approach is to use the null-collision technique due to

Skullerud [33, 22].

Figure 2-2 shows the result of running the MC code given in the Appendix. Drift

velocities were computed by measuring the displacement after a given number of colli-

sions and dividing by the amount of time elapsed. Three observations are noteworthy:

first, the drift velocity trace as a function of time vd(t) shows a transient behavior

with a timescale of ≈ 3 × 104 collisions. MC runs with different starting conditions

converge to the same result, after which vd stays roughly constant for as long as the

simulation runs. (In physical time, this transient behavior could exist on the order of

a microsecond.) Second, when the MC is run for a range of ~E fields, the results for

σm = 7Å2 and σm = 8Å2 neatly bracket the experimental results for He [14] (using

the appropriate λ for He).

2.4 MAGBOLTZ

The de facto “industry standard” for calculating electron drift velocities and angles

by Monte Carlo simulation is S. F. Biagi’s MAGBOLTZ code, which takes as in-

put cross sections defining the gases to be simulated [5]. The most recent version

contains a database of 58 gases, whose properties are known with varying degrees

of accuracy. Through the MC techniques outlined above, MAGBOLTZ can com-

pute a swarm’s drift velocity, Lorentz deflection angle, diffusion coefficients and other

properties of interest. The program suffers the disadvantage that its cross-section

parameters are stored internally, hard-coded directly into the program, so that mod-

ifying the characteristics of a gas involves finding and parsing the proper subroutine

within approximately 2.5 × 104 lines of FORTRAN.

The basic principle of computerized science colloquially termed “GIGO” (“Garbage

In, Garbage Out”) certainly applies to MC swarm calculations. Even the industry

15
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Figure 2-2: Drift velocities computed by Monte Carlo. The upper graph was com-
puted for E = 0.5 kV/cm and σm = 6Å2.
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Figure 2-3: Comparison between experimental Ar:n-C5H12 (60:40) mixtures (from [4])
and MAGBOLTZ calculations. At lower E fields, the discrepancy is highly notewor-
thy.

standard program can only be as good as the cross sections given it. For example,

Fig. 2-3 shows a comparison of MAGBOLTZ results and experimental measurements

for a 60:40 mix of Ar and n-pentane. Note the discrepancy between the experimen-

tal and theoretical curves; while some of the error may be experimental (see [3] for

discussion of the experimental procedure and error ranges), part of the discrepancy

is theoretical, due most likely to the fact that the n-pentane cross sections are not

understood. Note also that the theoretical calculation performed for a 60:40 mix of

Ar and neo-C5H12 has a much higher drift velocity over much of the E range. This

is due to the neo-pentane molecule’s roughly spherical symmetry, which produces a

sizeable Ramsauer minimum.
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2.5 Monte Carlo Entropies

As Liu and Bardsley observe, the MC method is particularly well-suited to the study

of transient effects [21]. We have already seen evidence of such a transient in Fig. 2-2,

in which the drift velocity is seen to approach a steady-state value as the simulation

progresses. Such a trend suggests a “thermalization” to a hydrodynamic flow situa-

tion, where the electron swarm moves in a regular fashion without regard to boundary

conditions (in terms of the overall drift or “terminal velocity”; as we shall see, the

scale of eE allows for energy fluctuations). When discussing a system’s approach

to thermal equilibrium, one frequently invokes the concept of entropy. (This is the

context of Boltzmann’s H-theorem; see the discussion in, e.g., Huang [18].) We ask,

therefore, if an MC simulation can be used to give a measure of entropy which we

can follow as time progresses.

One way of quantifying the information content (or “disorder”) involves the his-

togram of electron collisions as a function of energy. It is relatively trivial to arrange

the MC code to deliver such data; histograms for three different E-field values are

shown in Fig. 2-4. One observation easily presents itself: as the magnitude of the E-

field is increased, we find electrons scattering at higher energies. (In a language like C

which does not provide automatic bounds checking on its arrays, care must be taken

when building such histograms, so that electrons do not “scatter” into other regions

of memory. Such implementation details are addressed more fully in the Appendix’s

code listing.) If we treat the normalized histogram h(ǫ) as a probability distribution,

then Boltzmann’s formula gives us a measure of the electron’s entropy:

SB = −kB

∑

ǫ

h(ǫ) log h(ǫ). (2.11)

We use the subscript on SB as a reminder that this is a derived quantity, of as yet

uncertain physical significance.

Fig. 2-5 shows a typical time-evolution trace of vd(t) compared with a plot of SB(t)

for the same simulation. Note that the two quantities come to “hydrodynamic” values

on roughly the same time scale—a promising indicator that we are in fact seeing a

18
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Figure 2-4: Histograms of electron collision energies at three different electric field
values. Dividing by 5 × 105 (the total number of collisions) gives the probability
distribution h(ǫ).

kinetic system “thermalizing”.

It may appear, however, that the entropy SB is too simplified a quantity, since

it reduces the physics to a one-dimensional energy dependence. We can apply the

reasoning of S.-K. Ma [23] to investigate the entropy more fully, as follows.

For the moment, consider a system prepared at a fixed energy ǫ. The entropy of

this system is given by the phase-space volume through which the system’s trajectory

passes:

S = kB log Ω(ǫ). (2.12)

Fig. 2-6 illustrates the procedure graphically, for a velocity space described by two

axes: sampling the system at many times, we may find that (for example) the sam-

ple points fall roughly within the annulus pictured. The entropy, therefore, can be

measured by finding the area of the annulus.

Shang-Keng Ma points out that one can estimate this area by counting the number
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Figure 2-5: Comparison of vd(t) and SB(t) thermalization profiles.

of coincidences—that is, the number of times two sample points fall within the same

bin. (Effects of bin size are considered below.) If we sample N1 points and find N2

coincidences, then the probability C2 of coincidence is given by

C2 =
N2







N2

N1







=
N2

N1(N1 − 1)/2
. (2.13)

Elementary combinatorics can be used to generalize Eq. (2.13) to coincidences of

higher order. The probability C3 will, for example, be given by

C3 =
N3

N1(N1 − 1)(N1 − 2)/6
. (2.14)

Ma indicates that, for the fixed-energy case, the entropy is given by the simple

relation

S = −kB log C2 (fixed ǫ). (2.15)
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Figure 2-6: Shang-Keng Ma’s method of measuring entropy.
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Although Figure 2-6 illustrates Ma’s method in two dimensions, the phase-space grid

can be applied to higher dimensions as well. The MC code used in this paper (listed

in the Appendix) applies it to all three dimensions of the velocity distribution.

Two caveats are worth mentioning. first, in our case we do not have a system

prepared at fixed energy, as Figure 2-4 clearly indicates. Bialas and Czyz [6] gen-

eralize Ma’s method to this case, which in essence requires counting coincidences of

higher orders to provide correction terms to Ma’s result. Following an argument they

attribute to K. Zyczkowski, these correction terms can be given in terms of the Rényi

entropies [29, 19], defined as

Hk = − log Ck

k − 1
. (2.16)

Measuring C2 and C3 allows an entropy to be estimated using a formula Bialas and

Czyz derive to be

SM = H2 +
1 − log 2

log 2 − 1

2
log 3

(H2 − H3). (2.17)

Here, the subscript on the “Ma-Bialas-Czyz-Zyczkowski” entropy distinguishes SM

from the SB shown earlier.

We also note that SM , as calculated in our MC, only reflects the velocity degrees of

freedom, ignoring the positional components of the electron’s phase-space trajectory.

The theme of neglecting position dependence will be discussed again in Section 3.2.

For now, suffice it to say that counting position-space coincidences for a particle

which is, after all, being constantly driven forward presents practical and conceptual

difficulties. Note that Bialas and Czyz perform the same neglect, though for somewhat

different reasons. It is important to remember that both SM and SB are both derived

quantities, of perhaps more informational than thermodynamic interest.

The MC can be instructed to compute SM using a sample of collisions, one long

enough to include a significant number of counts but short enough that the system’s

state does not change appreciably during the sample. Fig. 2-2 suggests a time constant

on the order of 104 collisions, so in this paper both SB and SM are calculated at 500

or 1000-collision intervals.

Fig. 2-7 shows SM plotted against SB for many MC runs, calculated after 105
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collisions. (The different runs vary the E-field strength and the value of the cross

section, which was chosen to be independent of energy.) SM and SB are seen to be

linearly correlated; knowing only the Boltzmann entropy SB, one can compute SM ,

even though SM was derived from a higher-dimensional distribution. Note the offset

between the horizontal and the vertical scales; this shift is due to the finite resolution

of the velocity grid, an effect discussed in Section 6 of [6]. For this correlation analysis,

the offset is unimportant.

The correlation between SB and SM indicates that we can treat the swarm physics

in a lower-dimensional way. As the following chapter will treat in more detail, we

can simplify our representation of the electron distribution, giving probabilities in

terms of the energy (or, equivalently, the speed) rather than the velocity vector. This

reduction from a vector problem to a scalar one is an important approximation in the

analytic treatment of swarm kinetics, which the following chapter will develop.
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cases the entropy computed using Eq. (2.11) settles to a steady value after several
thousand collisions.
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Chapter 3

Analytic Solution of Transport

Equations

3.1 Kinetic Theory and Distribution Functions

Because the relatively simple interactions upon which our MC is built lead to sim-

ulation results which agree with experiment, it is tempting to consider an analytic

treatment based on the same assumptions. MC researches face difficulties: on an

abstract level, the lack of equations may produce the impression that the treatment

lacks understanding. This, in part, may motivate work such as [27], where algebraic

machinery is brought forth and quantities like the “temperature tensor” are defined.

On a more practical level, MC calculations take time: a workstation must evaluate

≈ 105 collisions, and even the iterations which do not involve an electron-atom im-

pact require trigonometric manipulations, which evaluate relatively slowly. We turn,

therefore, to the highly successful kinetic theory of gases, in the hope that it will pro-

vide expressions for quantities of interest (such as vd and α) which can be evaluated

faster than performing an MC run.

We consider one species of particle, the electrons, moving stochastically amongst

another species, the neutral scatterers. For most of this paper, the scatterers will be

hard spheres, distributed evenly on a macroscopic scale. This is a reasonable approx-

imation for noble gases, as discussed above (see Section 2.2). Blum and Rolandi [10]
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quote several key results of swarm kinetic theory, though with only minimal deriva-

tions. Fuller explanations can be found in Shkarofsky et al. [32] and the review arti-

cle [20]. For pedagogical treatments of kinetic theory in general, see e.g. Huang [18]

and Balescu [2].

The state of each electron can be specified by its position ~q and momentum ~p,

which together make a six-dimensional phase space. Given a total of Ne electrons,

we can therefore describe the entire swarm in 6Ne dimensions. Typically, we define a

phase space density

ρ(~p1, ~q1, ~p2, ~q2, . . . , ~pNe
, ~qNe

)

as the probability that the swarm will be found in the small region of phase space

around the point labeled by the given p and q coordinates [32]. Using dΓ to denote

an infinitesimal portion of the 6Ne-dimensional phase space Γ, we can define an

expectation value for any function O which depends upon the electron positions and

momenta:

〈O〉 =
∫

ρ({~pi, ~qi})O({~pi, ~qi})dΓ. (3.1)

This description, however, provides too much information. Were we to compute

the pressure, for example, that the electron swarm exerts on an object, we would

only need to know how likely we are to find any of the Ne electrons impacting the

object with a particular velocity. In other words, the quantity of physical interest is

the one-particle distribution, the probability of finding any electron at location ~q with

momentum ~p. As this quantity may well change over time, we must also consider its

dependence upon t. The one-particle distribution, fI, is defined in terms of the total

probability density ρ:

fI(~p, ~q, t) = Ne

∫ Ne
∏

i=2

d3~pid
3~qiρ(~p1 = ~p, ~q1 = ~q, ~p2, ~q2, . . . , ~pNe

, ~qNe
, t). (3.2)

The constant Ne in Eq. (3.2) arises from the assumption that the probability density

ρ is symmetric under exchanges of any two electrons.

We may similarly define distribution functions involving more particles, fII,fIII,
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and so on. Studying the time evolution of these distributions leads to the Bogoliubov-

Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, an interminably long series of equa-

tions in which the time derivative of fI depends upon fII, the derivative of fII depends

upon fIII and so on. Simplifying this hierarchy to a manageable equation will be the

topic of the next section.

3.2 The Generalized Boltzmann Equation

Some standard approximations made in neutral-gas kinetic theory also aply here,

and have been borne out by MC (see Section 2.3 above). First, the electron-atom

interaction is a local one, a short-range process whose timescale is much less than

the typical time between collisions. Second, the electrons are sufficently far apart

that they do not strongly interact with one another. These approximations, valid

for dilute and weakly ionized plasmas (the sort found in drift detectors), allow us to

truncate the BBGKY hierarchy. The resulting relation is a generalized form of the

Boltzmann kinetic equation, written in terms of the electron distribution function fI

and the gas atom distribution, denoted g:

(

∂

∂t
+ ~v · ∇q +

e

m
( ~E + ~v × ~B) · ∇v

)

fI(~q, ~v, t) = C[fI, fI] + C[fI, g]. (3.3)

The “streaming terms” on the left express how fI changes over time due to the

applied fields [32]. If the electron swarm propagated through free space—and if

the electrons did not interact with one another—then Eq. (3.3) would reproduce

Liouville’s theorem, namely that the probability distribution in phase space flows as

an incompressible fluid. However, these electrons are colliding with gas atoms, which

intuitively means that an electron may “disappear” from one position in phase space

and “reappear” elsewhere with an altered momentum. Therefore, the right-hand side

of Eq. (3.3) contains collision terms, symbolically denoted with the C operator, which

encode how the particle interactions change the swarm distribution fI.

In the case of a dense swarm—that is, a strongly ionized plasma—we must deal
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with long-range interactions, because the Coulomb potential falls off as 1/r. Such a

case is outside the realm of Eq. (3.3)’s applicability, and must instead be described by

a generalized Vlasov equation, analagous to the ones written for the distribution of

stars in a galaxy, since gravitational interactions are also 1/r potentials. (See, e.g., [7]

or [17].) Also, the derivation of Eq. (3.3) depends upon the “assumption of molecular

chaos”: it is only valid when the two-particle distribution fII can be factored into

independent one-particle distributions. Symbolically,

fII(~p1, ~q1, ~p2, ~q2) ≈ fI(~p1, ~q1) · fI(~p2, ~q2). (3.4)

This assumption is the source of Eq. (3.3)’s time irreversibility. See [18] and [8]-[9]

for perspectives on the loss of information implicit in this assumption.

Here, we follow the standard practice in swarm theory, which neglects the first

term—electron-electron interactions—in favor of the second term, C[fI, g], which ex-

presses the interactions of the light electrons with the heavy, neutral gas atoms [20].

This term can be expected to include a scattering cross-section, representing how

likely collisions are to occur, as well as some knowledge of energy losses and mo-

mentum transfers, which represent the effect that collisions have on the electrons. A

standard result in kinetic theory writes this collision term as an integral over the gas

atom’s momentum, ~pg. Using ~p ′ and ~pg
′ to denote the gas and electron momenta after

the collision (which we could in principle deduce from the specifics of the interaction

potential), we can write the operator C as

C[fI, g] = −
∫

d3~pgdΩ
dσ

dΩ
|~v − ~vg|[fI(~p, ~q)g(~pg, ~q) − fI(~p

′, ~q)g(~pg
′, ~q)]. (3.5)

Note that all functions carry the same position argument, since we have approxi-

mated that the collision occurs at the single point ~q. (The time arguments have been

suppressed for clarity.)

In principle, we would have to provide a similar formalism for the time evolution

of g(~p, ~q), the one-particle distribution for gas atoms. This is in fact not necessary

for two important reasons: first, that the electrons are a thousandfold lighter than
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the gas atoms, and second, that we have neglected the issues of ionization or electron

attachment which may alter the gas atoms’ properties after the swarm passes. As

explained above, an electron’s fractional energy loss per collision is small, but not

entirely negligible; this condition is known as a pseudo-Lorentz gas. In this case, the

effect of the energy loss is much more pronounced on the electron swarm than it is

upon the neutral gas, which remains essentially at the Maxwell-Boltzmann distribu-

tion,

g(~p, ~q) =
N

(2πMkBT )3/2
exp

(

− p2

2MkBT

)

, (3.6)

where M is the mass of a gas atom, as above, and N denotes the number of atoms

per unit volume.

Based on the conditions of the typical experimental setup, swarm theories are

typically developed in the hydrodynamic regime, where the swarm’s evolution is un-

affected by boundary conditions and has no memory of its initial configuration. (In

traditional kinetic theory, hydrodynamic equations govern a system where all expec-

tation values have relaxed to local equilibria; the system is then expected to relax

on a much longer timescale to some global equilibrium like the Maxwell-Boltzmann

distribution.) Working in this regime allows us to neglect the spatial and temporal

dependencies of fI, regarding it as a function of velocity alone:

fI = fI(~v).

For the special case of isotropic scattering, which the Monte Carlo approach treated

above, we may expect the distribution to be also isotropic in velocity space. This

allows us to write a two-term expression for fI:

fI(~v) = f0(v) +
~v

v
· ~f1(v). (3.7)

This treatment makes intuitive sense for noble gases, and it is supported by the

Monte Carlo results derived earlier. However, it cannot be expected to hold for more

complicated scattering molecules. Recent investigations have focused on the situations
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when Eq. (3.7) breaks down, necessitating that the angular dependence of fI(v) be

written with an arbitrarily long expansion in spherical harmonics. This can occur in

such a common instance as the inclusion of methane (CH4) in the neutral gas [37].

We are chiefly concerned with the case that ~E and ~B are perpendicular (with

~B possibly zero). Eq. (3.3) can be solved in much the same way as the ordinary

Boltzmann equation. Shkarofsky et al. give a detailed exposition, while Blum and

Rolandi quote the final answer. Again, the electron distribution as a function of

energy f0(ǫ) is the exponential of minus a quantity, but here the argument is not an

energy divided by kBT . Instead, it is an integral over all energies, depending upon

the cross section σm(ǫ) and the fractional energy loss per collision λ(ǫ). When the ~E

and ~B fields are orthogonal, we find the distribution function is

f0(ǫ) ∝ exp
[

− 3m

2e2E2

∫ ǫ

0

λ(ǫ′)[ν2(ǫ′) + ω2] dǫ′
]

(3.8)

where ω is the cyclotron frequency (e/m)B (see reference [1]). ν(ǫ) depends upon

the number density and the momentum-transfer (or “effective”) cross section: ν(ǫ) =

Nσm(ǫ)v, where v =
√

2ǫ/m.

The constant of proportionality is fixed by normalization. The definition of the

probability distribution implies that the integral of f0(v) over all velocities is related

to the spatial density of electrons, n:

4π
∫

∞

0

v2f0(v)dv = n. (3.9)

Changing Eq. (3.9) to an integral over energy ǫ is only a matter of changing variables.

The density n is found to equal

n = 2π
(

2

m

)3/2 ∫ ∞

0

ǫ1/2f0(ǫ)dǫ. (3.10)

For convenience’s sake, papers may graph f0(ǫ) normalized so that the integral of

ǫ1/2f0(ǫ) equals 1.

Knowing f0(ǫ), the generalized Boltzmann equation can be used to calculate f1(ǫ)
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(see Shkarofsky for details). The result is found in terms of derivatives of f0:

f1 = −v

ν
~∇rf0 −

e ~E

mν

∂f0

∂v
. (3.11)

As a first approximation, we shall again neglect the term involving spatial derivatives,

focusing on f0’s velocity dependence. With probability distributions in hand, we can

calculate expectation values by performing the appropriate integrals. For any vector

function ~O = O(v)~v
v
,

〈

~O
〉

=
4π

3n

∫

O ~f1v
2dv. (3.12)

The drift velocity itself is defined to be

~vd ≡ 〈~v〉 =
4π

3n

∫

~f1v
3dv. (3.13)

Generally speaking, the electron swarm’s diffusion must be defined by a matrix

Dij whose indices range over the x̂, ŷ and ẑ axes. In terms of a velocity integral,

Dij =
4π

3n

∫

∞

0

f0

v4

ν2 + ω2















ν −ω 0

ω ν 0

0 0 ν2+ω2

ν















, (3.14)

which simplifies in the ~B = 0 case to the single relation

DT =
4π

3n

∫

∞

0

f0

v4

ν
dv (3.15)

=
4π

3n

∫

∞

0

f0

v3

Nσ(v)
dv. (3.16)

Equivalent relations can be derived in “energy space” as well. Differentiating (3.8)

gives
df0

dǫ
= − 3m

2e2E2
λ(ǫ)[ν2(ǫ) + ω2]f0(ǫ). (3.17)

The chain rule gives us a relation between this derivative and the derivative taken
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with respect to electron velocity.

df0

dv
=

dǫ

dv

df0

dǫ
= mv

df0

dǫ
. (3.18)

By transforming the integrals to an ǫ dependence, one can find the following expres-

sions for the drift velocity vd and the transverse diffusion coefficient DT :

vd = −1

3

(

2

m

)1/2

(eE/N)
∫

∞

0

[σm(ǫ)]−1

(

df0

dǫ

)

ǫdǫ, (3.19)

DT = (1/3N) (2/m)1/2

∫

∞

0

[σm(ǫ)]−1f0(ǫ)ǫdǫ. (3.20)

Eqs. (3.19) and (3.20) are only valid in the ~B = 0 case. Furthermore, when ~B is

non-zero, a new quantity becomes of interest, the Lorentz deflection angle. When ~E

is perpendicular to ~B, the Lorentz angle takes on a computable form. The tangent

of the angle α is given by the ratio of two integrals,

tanα =

∫

∞

0
v3ω

ν2+ω2

df0

dv
dv

∫

∞

0
v3ν

ν2+ω2

df0

dv
dv

. (3.21)

It should be noted that all of these swarm parameters depend upon the electric

field ~E and magnetic field ~B only through the ratios ~E/N and ~B/N . A gas containing

Avogadro’s number of molecules at the STP volume of 22.4 litres has a number

density of roughly 2.69 × 1025 molecules per cubic metre. The experiments listed in

[4] report results at a slighly higher temperature, implying a somewhat lower density,

N = 2.47 × 1025. For a typical drift-chamber electric field on the order of 1 kV/cm,

E/N is on the order of 10−21 Vm2. A convenient unit for E/N is the townsend (Td),

which is defined to be 10−17 Vcm2, or 10−21 Vm2. In an analogous manner, White et

al. define the huxley (Hx) to be 10−27Tm3, a convenient scale for the density-reduced

magnetic field [36].

The integrals in Eqs. (3.8), (3.19) and (3.20) can be evaluated by hand, in certain

special cases described more fully below. In the “worst case scenario”, the integration

can be performed numerically, using a straightforward quadrature approach. (See the
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Appendix for a listing of C code which implements this idea.) However, when any of

our assumptions are relaxed, the analytic expressions for swarm parameters become

much more complicated—if they can be expressed at all. Including the effects of

anisotropic and inelastic scattering, for example, or modeling ~E and ~B fields crossed

at arbitrary angles leads to formalisms of much greater mathematical intricacy. In

some models, the temperature kBT becomes a tensor [27, 36]. These developments

are beyond the scope of this paper.

3.3 Special Cases

Certain special cases have been studied in which the cross-sectional dependence as-

sumes particularly simple forms. For example, when σm is constant over its energy

range, we obtain the Druyvesteyn distribution:

fD
0 (ǫ) ∝ exp

[

−3mλN2

2e2E2

(

σ2
m

m
ǫ2 +

ω2

N2
ǫ

)]

. (3.22)

Also, if we have the cross section decay with increasing energy as σm ∝ σ0/
√

ǫ, we

find that the drift electrons follow a Maxwell-Boltzmann distribution.

fM
0 (ǫ) ∝ exp

[

−3mλN2

2e2E2

(

2σ2
0

m
+

ω2

N2

)

ǫ

]

. (3.23)

This allows us to define an electron temperature Te:

kBTe =
2e2(E/N)2

3mλ
(

2σ2

0

m
+ ω2

N2

) . (3.24)

Assuming the Maxwellian distribution given by (3.23) and (3.24), substituting

fM
0 (ǫ) ∝ exp(−ǫ/kBT ) into (3.21) shows that

tanα =
ω

ν0

=
B

N

(

e

m

)
√

m

2
σ−1

0 . (3.25)

Here we have defined ν0 to equal the constant collision frequency, which in Maxwell’s
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Figure 3-1: Comparison of Maxwellian (3.23) and Druyvesteyn (3.22) distributions,
for a typical E-field and gas density.

distribution is independent of the velocity v. This formula makes intuitive sense: the

Lorentz angle is a “compromise” between the magnetic field, which pushes the swarm

off track, and the scattering effect, which limits its progression. We would thus expect

the angle to increase with applied field and decrease with the cross-sectional area, and

this is exactly what Equation (3.25) predicts.
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Carlo calculations. The dashed lines indicate a histogram of collision energies,
recorded during simulation runs of 5 × 105 collisions. Note that the Druyvesteyn
approximation (which is an equilibrium result obtained in the hydrodynamic regime)
closely follows the Monte Carlo calculation results.
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Chapter 4

The Inverse Problem

4.1 Introduction

In Section 3.2, we presented formulas for calculating swarm parameters like vd from

cross sections σm(ǫ). These equations, however, are not readily invertible: we lack

an algebraic way of calculating a σm(ǫ) curve given a set of vd measurements. This

is a problem of experimental interest, as evidenced by Fig. 2-3. Several approaches

have been tried upon this “inverse problem”, including trial-and-error [16], numerical

optimization [25, 35] and neural networks [24]. In this chapter, we shall present a

technique not yet applied to this problem, the Genetic Algorithm (GA), and examine

its effectiveness.

In general, suppose that we have a mapping from some set of parameters A to a

result B. We wish to invert the mapping and proceed from a B measured experimen-

tally to the best possible set of parameters A. One approach, which we might try if

mathematically inverting the mapping is too complicated, is to choose many different

sets A, compute what B-values result from each one, and choose which A performs

the best. We can then optimize from that point, using some iterative procedure to

refine the answer.

The simplest realization of this idea is a grid interpolation. Fig. 2-2 suggests

that such an interpolation can extract a zeroth-order approximation to the He cross

section. We can estimate that σHe is somewhere between 6 and 7 Å2. However,
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what happens if σm(ǫ) is not even approximately constant—say, in the presence of

a Ramsauer minimum? If the σm(ǫ) curve requires more parameters to specify, we

need an optimization routine which can explore that higher-dimensional parameter

space, avoiding if possible the “secondary extrema”—where a particular σm(ǫ) curve

is superior to its near neighbours, but inferior to the globally best-performing curve.

4.2 The Genetic Algorithm

The GA method is one way of addressing these issues. We characterize a gas by a

fixed number of cross-section parameters {σi}, which in most calculations are the σ

values at seven discrete energies. Because the computer can evalutate Eqs. (3.8)-

(3.19) quickly, we can construct a population of these gases, 100 or more individuals

in number. Initially, the {σi} values for each gas can be chosen randomly. We assign a

figure of merit, a “fitness”, to each gas by computing its vd({σi}) values for several E

fields and comparing these vd numbers to experimental results. (A χ2 comparison is a

reasonable tool.) The code then ranks the population in order of fitness. The uniquely

“genetic” step of the algorithm is the following: we produce a second generation

from the first by “breeding” the gases, exchanging their {σi} values like genes, and

weighting the “fitter” gases more strongly. By repeating the evaluation and selection

steps for several generations, the individuals within the population explore parameter

space, settling on the maxima of the fitness function. We can avoid secondary maxima

by introducing mutation operators, portions of code which randomly perturb the {σi}
“genes”. There are of course many variations on all these procedures; see [13] for more

elaborate discussions.

GAs are useful because they are relatively robust and problem-independent: ap-

plying a GA to a new problem essentially involves just writing a new function to

perform the forward mapping. The chief disadvantage is that a GA is not likely to

produce numerical results accurate to a large number of decimal places. This is an

inevitable consequence of the procedure’s stochasticity.

These issues and other matters of practical applicability are discussed in the User’s
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Figure 4-1: Results of GA optimization after 50 generations (data from [14]). The
solid line shows the momentum-transfer cross section of Crompton et al., which is
in close agreement with the theoretical calculation of Nesbet [26], performed using
variational methods in quantum mechanics.

Guide to the GA software used here, Charbonneau and Knapp’s PIKAIA [13, 12].

4.3 GA Results for He and Xe

Figure 4-1 shows the result of applying a GA to vd measurements conducted at 10

different E/N values. After only 50 generations, the GA is able to discover the zeroth-

order (Druyvesteyn) approximation and the presence of a peak at low energies. Note

that the results of the different GA runs cluster less tightly at higher ǫ, producing

a larger uncertainty at 5 eV than at 2 or 3 eV. This effect has a physical cause: as

Figure 3-2 indicates, there are fewer electrons colliding at those higher energies, so

the system is less sensitive to the exact cross-section value in that ǫ range. Any other

optimization algorithm would suffer the same difficulty; further refinement requires

not a better algorithm but more input data.

The same procedure can be applied to xenon measurements, with data taken from
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ure 4-1.

(in this case) [35]. Results, again obtained after 50 generations, are shown in Figure 4-

3. As the figure indicates, the GA is able to detect the Ramsauer minimum, although

it is not positioned at exactly the same energy as in the literature.

Using the measurements available from the MIT LNS Drift Gas R&D website

[4], the GA code can be employed to derive empirical cross sections for mixtures of

gases. Results of conducting this procedure on a 90:10 mix of He and CH4 are shown

in Figure 4-4. The Ramsauer minimum in CH4 [10] reduces the mixture’s effective

cross section below that of pure He. For the reasons explained above (see Section 3.2

and the discussion after Eq. (3.7)), such a σm(ǫ) curve can only be an empirical

approximation.
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Chapter 5

Conclusions

Ma’s method of calculating MC entropies, with the refinements of Bialas, Czyz and

Zyczkowski, establishes the thermalization behavior of an electron swarm moving

through hard-sphere scatterers. The success of this technique—which bolsters the

two-term approximation Eq. (3.7)—suggests that the same calculational tool can be

applied to the cases where the two-term simplification has been seen to break down.

This would involve modeling inelastic scattering in addition to the elastic process

described in Section 2.2, and also generalizing Eqs. (2.5) and (2.6) to the case that ~E

and ~B are not orthogonal. White et al. indicate that the error due to truncating the

expansion is generally reduced by increasing the angle between ~E and ~B, as long as

the swarm motion is generally along ~E [36]. Computing the MBCZ entropy in these

circumstances may further elucidate the effects of the two-term approximation.

In our calculations, electron energies were typically in the 1-5 eV range, which is

considerably higher than the thermal energy kBT ≈ 1

40
eV of the scattering atoms.

One could also consider swarm thermalization without a driving ~E field, using the

MBCZ entropy to further examine results such as [31] and [11].

The GA, as implemented by the PIKAIA 1.2 code, is able to extract cross-section

curves for noble gases. The only essential requirements are input data and computer

time; the results of Section 4.3 suggest that a GA code could also be used with higher-

term Boltzmann solutions [30, 36, 37] to derive cross sections for molecular gases like

CH4, CF4, CO2 and so forth.
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Chapter 6

Appendix

6.1 Monte Carlo Code Listing

The file gas.h uses preprocessor directives to define various physical constants, in

addition to quantities useful for various formulae.

// expressions involving physical constants

#define E_MASS 9.109e-31 // electron mass (kg)

#define E_CHARGE 1.6021765e-19 // coulombs

#define E_OVER_M 1.75882012e11 // coulombs per kilogram

#define PI 3.14159265359 // pi

#define FPI_OVER_3 4.18879020479 // 4pi / 3

#define DEG_P_RAD 57.2957795 // 180 / pi

#define RAD_P_DEG 0.0174532925 // pi / 180

#define EV_PER_J 6.2415097e18 // electron volts per joule

#define J_PER_EV 1.6021765e-19 // joules per electron volt

#define AVOGADRO 6.022142e+23 // avogadro’s number

#define ANG_PER_M 1e10 // angstroms per metre

#define ANG_PER_M2 1e20 // angstroms^2 per square metre

#define F0_RATIO 53230368 // 3m / 2e^2 (kg/coulomb^2)

#define VEL_PREF 197699 // 1/3 * sqrt(2e/m)

// Monte Carlo constants

#define TIMESTEP 1e-14 // delta-t in seconds

#define MAX_COLS 100000 // maximum collisions

#define REP_INT 1000 // collisions between v,alpha reports

#define ENT_USE 500 // collisions to sample for entropy

#define EPSILON 1e-6 // a nice small number
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#define NUM_COINC 2 // we record C_2 and C_3

#define MAX_BIN 18 // how many velocity bins we use

#define RENYI 2.133277 // constant in an entropy formula

// macros for electron kinematics

#define OMEGA(x) (E_OVER_M * x) // cyclotron frequency

#define KINETIC(x) (0.5*E_MASS*x*x) // electron kinetic energy

#define KVEL(x) (sqrt(2*x/E_MASS)) // velocity from kinetic energy

// stuff relating to cross sections

#define NUM_XSEC_POINTS 9 // how many points we will use

#define MAX_XSEC_AREA 10 // angstroms^2 which we will not exceed

#define INFINITY 20 // electron volts

#define INFINITE_JOULES 3.204353e-18 // INFINITY in joules

#define INF_VELOCITY 2.652e6 // KVEL(INFINITE_JOULES)

#define NUM_TABLE_ENTRIES 2000

#define HE_LAMBDA 2.7e-4 // fractional energy loss (unitless)

#define XE_LAMBDA 8.36e-6

#define DRUYV_XSEC 6e-20; // zeroth-order approximation to He-4

Also defined in gas.h are data structures for representing σm(ǫ) curves and elec-

trons.

struct xsec_point {

float energy; // energy in eV

float section; // cross-sectional area (angstroms^2)

float slope; // slope of line connecting points

int num_points;

};

struct electron {

float pos[3]; // position in 3-space

float vel[3]; // velocity in 3-space

float drift_vel; // drift velocity

float angle; // Lorentz angle

long collisions; // number of collisions sustained

long iterations; // number of times looped through

float total_time; // time spent in the gas

float energy;

};

Functions related to electron behavior are contained in gas.c. The most sig-
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nificant of these are advance(), which advances an electron by a given timestep,

as described in Section 2.1; iso scatter(), which implements the elastic scattering

procedure described in Section 2.2; and random walk(), which uses the two earlier

functions to simulate the overall stochastic motion of one electron. random walk()

contains the logic to calculate the MCBZ entropy described in Section 2.5.

void advance(struct electron * elec, float efield, float bfield,

float timestep) {

// advance the given electron by timestep seconds under the influence

// of the given fields

// E is along x, B is along z

float old_pos[3], old_vel[3];

float argument = 0, omega = 0, sine = 0, cosine = 0, ratio = 0;

int i = 0;

for(i = 0; i < 3; i++) {

old_pos[i] = elec->pos[i];

old_vel[i] = elec->vel[i];

}

omega = OMEGA(bfield);

argument = omega * timestep;

cosine = cos(argument); sine = sin(argument);

if(bfield > EPSILON)

ratio = efield / bfield; // ratio has units of velocity

// update the velocity

// the z-axis velocity doesn’t change (unless by scattering)

// while the x- and y-components are rotated into each other

// by the magnetic field -- v_x is also affected by the E-field

if(bfield > EPSILON) {

elec->vel[0] = old_vel[0] * cosine + (old_vel[1] + ratio) * sine;

elec->vel[1] = (old_vel[1] + ratio) * cosine - old_vel[0] * sine - ratio;

} else {

elec->vel[0] = old_vel[0] + E_OVER_M * efield * timestep;

elec->vel[1] = old_vel[1];

}

// now, update the position

elec->pos[2] += (old_vel[2] * timestep);

if(bfield > EPSILON) {

elec->pos[0] -= (old_vel[0] * sine - (old_vel[1] + ratio) * (1 - cosine))

/ omega;

47



elec->pos[1] += ((old_vel[1] + ratio) * sine + old_vel[0] * (cosine - 1)

- efield * E_OVER_M * timestep) / omega;

} else {

elec->pos[0] += old_vel[0] * timestep

+ 0.5 * E_OVER_M * efield * timestep * timestep;

elec->pos[1] += old_vel[1] * timestep;

}

}

void iso_scatter(struct electron * elec, float loss_ratio) {

// isotropic scattering means that we start the electron fresh

// from the origin. behavior is described by the polar coordinates

// (v, theta, phi) where v (the velocity after scattering) is set

// by the fractional energy loss per collision, lambda. theta and

// phi are random numbers.

float v = 0, costheta = 0, theta = 0, phi = 0;

// compute the new velocity vector’s polar angles

// 0 <= theta < pi

// 0 <= phi < 2*pi

costheta = 1 - 2 * drand48();

theta = acos(costheta);

phi = drand48() * 2 * PI;

// compute the velocity using the energy-loss ratio

v = KVEL(electron_kinetic(elec) * (1 - loss_ratio * (1 - costheta)));

// convert polar coordinates to cartesian

// v_x = v cos(phi) sin(theta)

// v_y = v sin(phi) sin(theta)

// v_z = v cos(theta) (n.b. v_x^2 + v_y^2 + v_z^2 = v^2)

elec->vel[0] = v * cos(phi) * sin(theta);

elec->vel[1] = v * sin(phi) * sin(theta);

elec->vel[2] = v * costheta;

}

void random_walk(struct electron * elec, struct xsec_point * points,

float efield, float bfield, float density, float energy_loss,

float timestep, long max_collisions, float max_len) {

// bounce an electron around inside a gas specified by the given numbers

// in crossed E- and B-fields. B is defined to be along z, and E is defined

// to be along x.

long collisions = 0, iterations = 0, last_iterations = 0;

long last_drift_report = 0, n2 = 0, n3 = 0;

float energy = 0, xsec = 0, prob = 0, roll = 0, total_time = 0;
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float h2 = 0, h3 = 0, f0 = 0, entropy = 0, cum_entropy = 0;

float v_entropy = 0, v_cum_entropy = 0;

float coincidences[NUM_COINC];

long coinc_matrix[MAX_BIN][MAX_BIN][MAX_BIN];

int indices[3];

int i = 0, j = 0, k = 0;

// zero the energy histogram

for(i = 0; i < 100; i++)

histogram[i] = partial_histogram[i] = 0;

// zero the collision matrix

for(i = 0; i < MAX_BIN; i++) {

for(j = 0; j < MAX_BIN; j++) {

for(k = 0; k < MAX_BIN; k++) {

coinc_matrix[i][j][k] = 0;

}

}

}

fprintf(stdout,"results = [\n");

while((collisions < max_collisions)) {

// propagate our electron

advance(elec, efield, bfield, timestep);

energy = electron_kinetic(elec);

// test for a collision

xsec = xsec_momentum_interpol(energy, points);

prob = (xsec * density * timestep *

sqrt(elec->vel[0]*elec->vel[0] + elec->vel[1]*elec->vel[1]

+ elec->vel[2]*elec->vel[2]));

roll = drand48();

// if a collision has occurred, perform a scattering operation

if(roll <= prob) {

collisions++;

iso_scatter(elec, energy_loss);

i = (int) ((energy * EV_PER_J) * 99 / 20);

if(i > 99)

i = 99;

histogram[i]++;

partial_histogram[i]++;
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// tally the current collision in the proper place

if(collisions - last_drift_report <= ENT_USE) {

for(i = 0; i < 3; i++) {

indices[i] = (int) (elec->vel[i] * MAX_BIN / INF_VELOCITY

+ (MAX_BIN / 2));

if(indices[i] >= MAX_BIN)

indices[i] = MAX_BIN - 1;

if(indices[i] < 0)

indices[i] = 0;

}

coinc_matrix[indices[0]][indices[1]][indices[2]]++;

i = coinc_matrix[indices[0]][indices[1]][indices[2]];

if(coinc_matrix[indices[0]][indices[1]][indices[2]] >= 2)

n2 += (i - 1);

if(coinc_matrix[indices[0]][indices[1]][indices[2]] >= 3)

n3 += (i - 2);

}

}

iterations++;

// bounding box

if((fabs(elec->pos[0]) >= max_len) || (fabs(elec->pos[1]) >= max_len)

|| (fabs(elec->pos[2]) >= max_len))

break;

// drift measurement report

if((collisions > 0) && (collisions % REP_INT == 0)

&& (last_drift_report != collisions)) {

last_drift_report = collisions;

last_iterations = iterations;

elec->total_time = iterations * timestep;

elec->angle = ((atan2(elec->pos[1],elec->pos[0])) * DEG_P_RAD);

elec->drift_vel = (sqrt(elec->pos[0]*elec->pos[0]

+ elec->pos[1]*elec->pos[1]

+ elec->pos[2]*elec->pos[2]) / elec->total_time);

coincidences[0] = (float)n2 / (float)(ENT_USE * (ENT_USE - 1) / 2);

coincidences[1] = (float)n3 / ((float)ENT_USE * (ENT_USE - 1)

* (ENT_USE - 2) / 6);
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// compute the Renyi entropies h2 and h3

h2 = -log(coincidences[0]);

h3 = -log(coincidences[1]) / 2;

// compute the "real" entropy from the Renyi entropies

if(coincidences[1] > 0)

v_entropy = h2 + RENYI * (h2 - h3);

else

v_entropy = h2;

// zero the collision matrix

n2 = n3 = 0;

for(i = 0; i < MAX_BIN; i++) {

for(j = 0; j < MAX_BIN; j++) {

for(k = 0; k < MAX_BIN; k++) {

coinc_matrix[i][j][k] = 0;

}

}

}

entropy = cum_entropy = 0;

for(i = 0; i < 100; i++) {

if(partial_histogram[i] > 0) {

f0 = (float)partial_histogram[i] / REP_INT;

entropy -= f0 * log(f0);

}

partial_histogram[i] = 0;

if(histogram[i] > 0) {

f0 = ((float)histogram[i] / collisions);

cum_entropy -= f0 * log(f0);

}

}

report(collisions,iterations,elec->drift_vel,

entropy, cum_entropy, v_entropy, h2);

}

}

elec->iterations = iterations;

elec->collisions = collisions;

elec->total_time = iterations * timestep;

elec->angle = ((atan2(elec->pos[1],elec->pos[0])) * DEG_P_RAD);

elec->drift_vel = (sqrt(elec->pos[0]*elec->pos[0] + elec->pos[1]*elec->pos[1]

+ elec->pos[2]*elec->pos[2]) / elec->total_time);

fprintf(stdout,"];\n\nhistogram = [\n");
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for(i = 0; i < 100; i++)

fprintf(stdout," %d\n",histogram[i]);

fprintf(stdout,"];\n");

fflush(stdout);

}

6.2 Analytic Code Listing

The following three functions used to calculate the distribution function f0(ǫ). The

extended trapezoidal rule algorithm is adapted from Numerical Recipes in C [28];

similar logic is used to implement the other integrals given in Section 3.2 for vd, α

and so forth.

float distrib_integrand(float energy, struct xsec_point * points,

float energy_loss,

float efield, float bfield) {

// compute the integrand of the distribution function f_0

float xsec = 0, omega = 0, kvel_factor = 0;

xsec = xsec_momentum_interpol(energy, points);

return energy * (xsec * xsec);

}

float distrib_trapzd(float a, float b, int n,

float efield, float bfield,

struct xsec_point * points, float energy_loss) {

// computes the nth stage of refinement of an extended trapezoidal rule.

// a and b are limits

float x,tnm,sum,del;

static float s;

int it, j;

if (n == 1) {

return (s=0.5*(b-a) * (distrib_integrand(b,points,energy_loss,

efield,bfield)

- distrib_integrand(a,points,energy_loss,
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efield,bfield)));

} else {

for (it=1,j=1;j<n-1;j++) it <<= 1;

tnm = it;

del = (b-a) / tnm; // spacing of points to be added

x = a + 0.5*del;

for (sum=0.0,j=1;j<=it;j++,x+=del)

sum += distrib_integrand(x,points,energy_loss,efield,bfield);

s = 0.5*(s + (b-a) * sum/tnm); // replaces s by its refined value

return s;

}

}

float distribution(float energy, struct xsec_point * points,

float energy_loss, float efield, float bfield) {

// Integrate up to find the distribution function

float argument = 0, integral = 0, dummy_prefactor = 1, constants = 0;

int j;

float olds = 0.0;

// compute the integral

for (j=1;j<=JMAX;j++) {

fflush(stderr);

integral = distrib_trapzd(0,energy,j,efield,bfield,points,energy_loss);

if (j > 5)

if (fabs(integral-olds) < EPS*fabs(olds) ||

(integral == 0.0 && olds == 0.0)) break;

olds = integral;

}

// multiply the integral by the proper constant

// assumes sigma is in A^2 and eneriges were done in eV

constants = 3e-40 * energy_loss;

argument = -(constants / (efield * efield)) * integral;

// take the exponential

return exp(argument);

}

The following functions wrap the functions which perform the actual numerical

integration, giving a convenient interface. analytic walk() takes a pointer to an

electron structure (defined in gas.h above) and fills its data elements with the ap-
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propriate values. compare() is used by pikaia.h to calculate a figure of merit, or

“fitness”, by comparing analytic walk()’s results to experimental data.

void analytic_walk(struct electron * elec, struct xsec_point * points,

float efield, float bfield, float density,

float energy_loss) {

float driftvel = 0, norm_factor = 0, lorentz_angle = 0, isodiff = 0;

int i = 0;

// scale field values by density

efield = efield / density;

bfield = bfield / density;

// normalize by density

norm_factor = normalize(efield, bfield, points, energy_loss);

// compute the drift velocity

driftvel = velocity(efield, bfield, points, energy_loss, norm_factor);

// compute the isotropic diffusion coefficient

isodiff = diffusion(efield, bfield, points, energy_loss,

norm_factor, density);

// compute the Lorentz angle

lorentz_angle = angle(efield, bfield, points, energy_loss, prefactor);

// put the calculated values into the electron struct

elec->drift_vel = driftvel;

elec->isodiff = isodiff;

elec->angle = lorentz_angle;

}

float compare(float efields[], float bfields[], float velocities[],

float isodiffs[], int num_measurements,

struct xsec_point * points, float density, float energy_loss) {

float sse1 = 0, sse2 = 0, difference = 0;

float *predicted_vels, *predicted_isodiffs;

struct electron * elec;

int i = 0, j = 0;

// create an electron

elec = (struct electron *) malloc(sizeof(struct electron));
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// size arrays

predicted_vels = (float *) malloc(num_measurements * sizeof(float));

predicted_isodiffs = (float *) malloc(num_measurements * sizeof(float));

fprintf(stderr,"v_i = [");

for(i = 0; i < num_measurements; i++) {

// initialize the electron

for(j = 0; j < 3; j++)

elec->vel[j] = elec->pos[j] = 0;

elec->collisions = elec->total_time = elec->iterations = 0;

elec->drift_vel = elec->angle = elec->isodiff = 0;

// bounce around inside the gas

analytic_walk(elec, points, efields[i], bfields[i], density, energy_loss);

predicted_vels[i] = elec->drift_vel;

predicted_isodiffs[i] = elec->isodiff;

fprintf(stderr," %.3e", predicted_vels[i]);

// for ease of explication, only use the velocities right now

difference = (predicted_vels[i] - velocities[i])

/ (velocities[i]);

sse1 += (difference * difference);

}

fprintf(stderr,"];\n");

free(elec);

free(predicted_vels);

free(predicted_isodiffs);

return 1/sse1;

}

The code in pikaia.h interfaces the routines above with the PIKAIA 1.2 genetic

algorithm software. Because PIKAIA is coded in FORTRAN-77, pikaia.h depends

upon B. D. Steinmacher-Burow’s cfortran.h header file [34], which provides tools

for intermingling the two languages.

#ifndef __pikaia_h

#define __pikaia_h

#include "cfortran.h"

#include "gas.h"

// PIKAIA demands parameters to be within [0, 1]

#define PIKSCALE(x) ((x - MIN_XSEC_AREA) / (MAX_XSEC_AREA - MIN_XSEC_AREA))
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#define UNPIKSCALE(y) (MIN_XSEC_AREA + y * (MAX_XSEC_AREA - MIN_XSEC_AREA))

// PIKAIA also expects fitness values to be maximal

// at the desired point, not minimal like chi^2

#define FITNESS(x) (1 / x)

// global variables (ick)

float efields[NUM_INPUTS];

float bfields[NUM_INPUTS];

float velocities[NUM_INPUTS];

float isodiffs[NUM_INPUTS];

float pik_energies[] = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 5.5};

// function prototypes

//int MAIN__(){return 0;}

float fcn (int n, float *xval);

void init_arrays();

void init_arrays() {

// initialize the arrays holding the experimental numbers

// which we are trying to match

int i = 0;

for(i = 0; i < NUM_INPUTS; i++) {

bfields[i] = 0;

}

// He:CH4 (90:10)

efields[0] = 0.196390862e5;

velocities[0] = 0.999e4;

efields[1] = 0.245488577e5;

velocities[1] = 1.143e4;

efields[2] = 0.294586293e5;

velocities[2] = 1.274e4;

efields[3] = 0.343684008e5;

velocities[3] = 1.378e4;

efields[4] = 0.392781724e5;

velocities[4] = 1.462e4;

efields[5] = 0.441879439e5;

velocities[5] = 1.538e4;

efields[6] = 0.490977155e5;

velocities[6] = 1.597e4;

efields[7] = 0.54007487e5; velocities[7] = 1.637e4;

efields[8] = 0.589172586e5; velocities[8] = 1.685e4;
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efields[9] = 0.638270301e5; velocities[9] = 1.72e4;

efields[10] = 0.687368017e5; velocities[10] = 1.738e4;

efields[11] = 0.736465732e5; velocities[11] = 1.76e4;

efields[12] = 0.785563448e5; velocities[12] = 1.778e4;

efields[13] = 0.834661163e5; velocities[13] = 1.806e4;

efields[14] = 0.883758879e5; velocities[14] = 1.809e4;

efields[15] = 0.932856594e5; velocities[15] = 1.824e4;

efields[16] = 0.98195431e5; velocities[16] = 1.838e4;

efields[17] = 1.03105203e5; velocities[17] = 1.854e4;

efields[18] = 1.08014974e5; velocities[18] = 1.872e4;

efields[19] = 1.12924746e5; velocities[19] = 1.875e4;

efields[20] = 1.17834517e5; velocities[20] = 1.903e4;

efields[21] = 1.22744289e5; velocities[21] = 1.898e4;

efields[22] = 1.2765406e5; velocities[22] = 1.921e4;

}

float fcn (int n, float *xval) {

// returns 1 over the reduced SSE

int i = 0;

float inv_sse = 0;

struct xsec_point * points;

// construct the points structure

points = (struct xsec_point *) malloc((n+1) * sizeof(struct xsec_point));

for(i = 0; i < n; i++) {

//points[i].energy = i; // why not?

points[i].energy = pik_energies[i];

points[i].section = UNPIKSCALE(xval[i]);

points[i].num_points = n + 1;

}

points[n].energy = 25;

points[n].section = 10;

points[n].num_points = n + 1;

compute_slopes(points);

fprintf(stderr, "xsec = [\n");

for(i = 0; i < n; i++) {

fprintf(stderr," %.2f %.3f\n", points[i].energy, points[i].section);

}

fprintf(stderr, "];\n");

fflush(stderr);

// get the sum of squared errors

inv_sse = compare(efields, bfields, velocities, isodiffs,

NUM_INPUTS, points, 2.47e25, HE_LAMBDA);
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free(points);

fprintf(stderr, "inv_sse = %.3e\n", inv_sse);

return inv_sse;

}

// the following wrappers connect our two languages

// calling FORTRAN from C

PROTOCCALLSFSUB7(PIKAIA,pikaia,ROUTINE,INT,FLOATV,FLOATV,PFLOAT,PINT,ROUTINE)

#define PIKAIA(fcn,n,ctrl,xval,fval,status,intreport) \

CCALLSFSUB7(PIKAIA,pikaia,ROUTINE,INT,FLOATV,FLOATV,PFLOAT,PINT,ROUTINE,\

fcn,n,ctrl,xval,fval,status,intreport)

PROTOCCALLSFSUB1(PKINIT,pkinit,INT)

#define PKINIT(seed) CCALLSFSUB1(PKINIT,pkinit,INT,seed)

// calling C from FORTRAN

float pikaiafcn(int *n, float *xval);

float pikaiafcn(int *n, float *xval) {

return fcn(*n, xval);

}

float pikaiareport(int *n, float *xval, float *fitness, int *igen);

float pikaiareport(int *n, float *xval, float *fitness, int *igen) {

int num_points = 0, i = 0;

num_points = *n;

fprintf(stdout,"interim_%d = [\n", *igen);

for(i = 0; i < num_points; i++)

fprintf(stdout,"\t%.2f\t%.4f\n", pik_energies[i], UNPIKSCALE(xval[i]));

fprintf(stdout,"];\n\n");

fprintf(stdout,"fitness_%d = %.3e;\n\n", *igen, *fitness);

fflush(stdout);

}

FCALLSCFUN2(FLOAT,pikaiafcn,PIKAIAFCN,pikaiafcn,INT,FLOATV)

#endif
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